Preface

The purpose of this laboratory manual is to introduce undergraduate students to techniques used in biochemistry and molecular biology laboratories and ensure that they master the lab skills necessary to be competitive in the job market.

A biochemistry laboratory course is required for chemistry majors, biochemistry majors and may be chosen as an elective by pre-health professionals or students focusing on the molecular aspects of biology. This laboratory manual takes advantage of the fact that a biochemistry lecture course is pre- or co-requisite to taking a biochemistry lab course. As a result students are expected to be familiar with the general principles behind each experiment from a lecture course. The organization of each chapter is as follows

–   Review of principles: Each chapter begins with a to-the-point review of basic principles (what is a nucleic acid, what does a polymerase do and how it works etc.). In the authors’ experience, limiting background in a lab manual to information that is pertinent to performing the laboratory experiment is a good strategy at the undergraduate level. This approach directs students’ attention to putting the theory into practice as opposed to learning the theory in lab, which can be done better in the lecture course. In other words, we find that when we teach lab with a clear focus on improving students’ experimental skills we achieve a higher content retention.

–   Reagent needs: A complete list of materials and equipment needed is listed for six student teams. Two-to-three students per team works well to maximize peer interaction while still making sure that each student has a chance to intellectually contribute to the assignments. The course was typically taught by a trained biochemist and a teaching assistant at the authors’ institution, but one instructor is sufficient for a group of no more than 16 students.

–   Protocols: A detailed protocol is given for each experiment, including recommended timeline to complete experiments within three hours, which typically is the time allocated for a biochemistry laboratory session.

–   Notes to the instructor: This section provides information on how to (a) alter the protocol to accommodate different instrumental setups; (b) arrange the experiments to fit within the three hours lab time that is commonly used at most institutions; and (c) how to utilize the waiting time that is inevitable when performing biochemistry experiments.

–   Problem sets: Problem sets are grouped into three categories:

–  Pre-lab questions are designed to focus students’ attention to the most important points in the experiment. In the authors’ experience, students perform much better during lab if they are asked to answer simple questions about the experiments ahead of time. Therefore, it is recommended that students complete pre-lab assignment before coming to lab.

–   Lab report checklists contain questions that guide students through data processing and analysis.

–   Worksheets contain problems that are designed to help students think more closely about each experiment. These questions are of increasing difficulty. The instructor may assign all the questions or pick ones that best match the skill level of the class. They work well as problem sets during lab to fill the waiting time that is notorious for biochemistry experiments.

Questions & AnswersAll Questions

Ask Question

NA

Category

© SKILLMD. All rights reserved.
Courses
Classes
Tutors
Community
Blogs
My Account